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Abstract
High Voltage insulators play a vital role in power transmission systems and are subjected to combined electrical, 
mechanical, and thermal stress. Common design strategies for HV insulators involve semi-analytical methods and 
Finite Element Analyses (FEA) to arrive at designs that meet the required design and manufacturing criteria. Topology 
Optimization (TO) is a design strategy widely adopted to minimize the weight and volume of the design while retaining 
its performance. In this work, we propose a modification to the traditional TO process to maximize the combined 
electrical and structural performance of HV insulators. This modification incorporates electric field considerations into 
the T.O. process. 
Keywords: Finite Element Analysis, High Voltage Insulators, Topology Optimization

1.  Introduction
The reliable operation of power transmission systems 
heavily depends upon the effectiveness of the High 
Voltage (HV) insulators which are subject to various 
stresses including mechanical, electrical, and thermal. 
The design of HV insulators generally involves semi-
analytical methods and/or FEA. This is an iterative 
approach and might have a long lead time. With recent 
technological improvements in additive manufacturing, 
TO can be an effective design strategy for designing 
HV insulators using less material without impacting 
performance. This paper adapts the TO strategy to the 
design of HV insulators. The objective is to minimize 
the combined electrical and structural stress on a 
given volume of material, (instead of only concerning 
structural load). By incorporating the influence of 
electrostatic fields into the optimization routine, the 
proposed approach aims to achieve a trade-off between 
electrical and structural performances resulting in 
reliable designs for HV insulators at a lower lead time. 

This work is limited to computational implementations 
of topology optimizations using FEA. Experimental 
validations will be conducted as a part of future studies.

2.  Methodology
TO is a computational design strategy used to optimize 
material distribution within a predetermined design 
space of interest subject to certain loads and boundary 
conditions such that the resulting design meets the desired 
performance specifications. A general TO algorithm is 
defined as follows.
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where f(x) is the objective function and fc(x), with c = 1, 
2, ..., nc is constraint functions bound by constraint limits 
imposed by the function fc

 and xe is the design variable1. 
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2.1 � Topology Optimization for Static 
Structural Problems

The structural TO algorithm minimizes the overall 
compliance of the design subject to a volume constraint. 
Therefore, Equation (1) may be rewritten as follows.
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where, CS is the structural compliance, u is the global 
displacement vector, K is the global stiffness matrix, V(x) is the 
current volume fraction, Vo is the maximum volume fraction,  
is the target volume fraction and xe is the elemental density. 

2.2 � Topology Optimization for 
Electrostatic Problems

The Field Utilization Factor (FUF) is an important 
parameter for any insulation system. The higher the FUF, 
the better the stress control. It is defined as the ratio of an 
average electric field to the maximum electric field and is 
given by Equation (3).
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where F(x) is the electric field at the coordinate x in a 3D 
design space (and not a point on the x-axis). Considering 
a discretized domain with ne number of elements, Ω is the 
region where the material exists in the design space given by 
Equation (4).
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In electrostatic TO, the design objective is to maximize 
FUF (or) to minimize (−FUF) subject to a volume constraint 
following the equation below.
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For the sake of simplicity and as a first step the surface 
stress (creepage stress) is neglected. Therefore, one cannot 
expect the optimized designs to have sheds, (which are 

used to provide sufficient creepage) as that in typical HV 
insulators.

2.3  Modified SIMP Approach
In this work, a modified Simplified Isotropic Material 
with Penalisation (SIMP) approach is adopted in the TO 
algorithm2. The SIMP approach modifies the continuous 
density distribution of the design into a discrete density 
distribution (either 0 or 1) for obtaining black-and-
white regions and ensuring manufacturing feasibility. 
In the modified SIMP method, each element is assigned 
a density xe that determines its Young’s modulus Ee as 
described in the equation below.

	 E x E x E Ee e min e
p

o min( ) = + −( ) � (6)

where, E0 is the stiffness of the material. Ideally, Young’s 
modulus ‘Ee’ of an element ‘e’ should vary between 0 and E0 
as the element density ‘xe’ varies between 0 and 1. However, 
during static-structural FEA, having Young’s modulus 
equal to zero may result in singular matrix operations1,2. To 
prevent this issue, a non-zero minimum Young’s modulus 
(usually 10-9) is assigned to elements with no material. 
With this assumption, Young’s modulus of any element 
varies between Emin and E0 as the element density ‘xe’ varies 
between 0 and 1 following Equation (6). ‘p’ is the penalty 
factor (usually assigned to 3). For the electrostatic problem, 
the formulation is similar. However, the minimum possible 
relative permittivity is 1 (that of vacuum), therefore modified 
SIMP equation is written as follows.

	 � �r e e e
p
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As the element density varies linearly from 0 to 1, the 
relative permittivity of the element varies non-linearly from 
1 to εr following Equation (7).

2.4  Optimization Routine
The optimization routine follows the Optimality Criteria 
(OC) method3. The OC method is a popular heuristic 
approach to solving structural and topology optimization 
problems. It is an iterative process of sensitivity analysis, 
update of design variables and filtering until convergence.

2.4.1  Sensitivity Analysis
For the structural case, the sensitivities are computed 
using the method of adjoint variables. More information 
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can be found in2. Here, the sensitivity of the objective 
function CS concerning the design variable xe is given as 
follows.
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where, CSe is the element of structural compliance. 
Similarly, the sensitivity of the electrostatic case is given 
below. A detailed derivation of the same is presented in4.
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where, F(e) is the electric field intensity in the finite 
element e. The sensitivity of the material volume V 
concerning xe is 1 because, the volume in each element 
increases as much as there is material inside the element1,2. 
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2.4.2  Update of Design Variables
Equation (9) is assumed to govern the evolution of the 
design variable xe 
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where, m is a positive move limit, n is a numerical 
damping coefficient set to ½ and Be is the net structural 
sensitivity formulated as follows.
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where, λ is a Lagrangian multiplier chosen to satisfy the 
volume constraint. 

2.4.3  Filtering of Sensitivities
Filtering is implemented into TO routines to ensure 
continuous solutions, prevent checkerboard patterns and 
reduce mesh dependency. In this work, a density-based 
filter is adopted, and it modifies the updated densities as 
follows5.
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where, �xe  is the filtered density, Ne is the set of elements i 
for which the center-to-center distance Δ(e, i) to element e is 
smaller than the filter radius rmin and Hei is the weight factor 
calculated using the equation below.

	 H max r e iei min= − ( )( )0, ,∆ 	 (14)

2.5 � Combined Electrostatic and Static 
Structural Sensitivities

The overall sensitivity is the weighted sum of the static 
structural and the electrostatic sensitivities and is 
expressed as follows.
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The weight coefficient α is adjusted to control the 
influence of structural and electrostatic sensitivities in 
the optimization routine. An increase in α, increases the 
influence of structural sensitivity and decreases the influence 
of electrostatic sensitivity in the overall sensitivity following 
Equation (15). When α= 0 the design sensitivity only 
depends on electrostatic sensitivity. When α= 1, the design 
sensitivity only depends on structural sensitivity. Any other 
value of α in the range 0 to 1 considers both electrostatic and 
structural sensitivities.

Figure 1.  Boundary conditions for (a) static structural 
FEA and (b) electrostatic FEA.

2.6  Problem Definition
Since, the objective is to optimize the design of HV 
insulators (which usually have an axis of symmetry), the 
problem is set up in an R-Z plane (as 2D axisymmetric) 
as shown in Figure 1. For simplicity, the problem is 
formulated in a normalized solution domain ranging 
from R = 0 to R = 1 and Z=0 to Z=1. For the same 
reason, the boundary conditions are also expressed as 
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nondimensional quantities, specified in normalized 
units ranging between 0 and 1. The edge A is the axis 
of symmetry, for both static structural and electrostatic 
FEA. For static structural FEA, all the nodes on this 
edge are free to move along the axis but are fixed in 
the radial direction. HV insulators bear the weight of 
the HV conductor while being fixed at the other end, 
experiencing constant compressive stress. Therefore, on 
edge B, all nodes experience compressive force F = 1 in 
the downward Z direction. All the nodes on the edge C 
are structurally fixed and immovable as shown in Figure 
1(a). For electrostatic FEA, the boundary conditions are 
displayed in Figure 1(b). A voltage V = 1 is applied at all 
nodes in the HV electrode (pink region) including edges 
B and D while, the voltage V = 0 is applied to all the nodes 
in the ground electrode (green region) including edges C 
and E. 

3.  Results
The domain shown in Figure 1 is discretized into 100 
× 100 elements, rmin set to 1.5, the penalty factor p set 
to 3 and the target volume fraction is set to 20%. This 
implies that the optimized design will only occupy 
20% of the total design space (R= [0,1]; Z= [0,1]). 
The methodology described in the previous section 
is followed for optimization. FEA is used to solve the 
governing equations (given below) for static structural 
and electrostatic problems.

	 K * U = F,� (16)

	 �� �� � �� � 0, � (17)

where, K, U, and F are the global stiffness matrix, global 
displacement vector and global force vector respectively 
while ϕ and ε are the electrostatic potential and the 
material permittivity respectively. The computational time 
for optimization depends on the speed of FEA solutions. 
Hence a rapid FEA computation routine inspired by the 
“MILAMIN” project was adopted6. This FEA routine can 
compute solutions in over 20,000 degrees of freedom 
in less than 0.1 seconds. Further, 3 different designs 
corresponding to pure electrostatic TO (α = 0), pure static 
structural TO (α = 1), and combined TO (α = 0.5) having 
has 50% influence of both static structural and electrostatic 
sensitivities are evaluated. Figure 2(a), (b) and (c) show the 
design solutions for α = 0, 0.5, and 1 respectively. The black 
regions are the regions occupied by material.

The variation of the optimized design with parameter 
α is significant. However, one factor which is obvious in 
all cases is that the metal electrodes are always bridged by 
the material for good structural load bearing capacity as 
well as electrostatic stress-handling capacity. When α = 
0, the material fully encloses the electrodes for efficient 
electrostatic stress control. As α increases to 0.5 the material 
partially redistributes itself in the region between the metal 
electrodes to provide a compromise between structural and 
electrostatic stresses. Also, when α = 1 a truss structure is 
obtained for improved load bearing capacity. Also, due to 
axis symmetry, the routine preferentially avoids material at 
the periphery than the material close to the axis of symmetry. 
To understand the structural integrity of the optimized 
designs, the combined normal and shear stress also known 
as the von Mises stress is evaluated for α = 0, 0.5 and 1 and is 
as shown in Figure 3 (a), (b), and (c) respectively. 

Figure 2.  Optimized designs for (a) α = 0, (b) α = 0.5 and 
(c) α= 1.

Figure 3.  von Mises stress maps inside the optimized 
designs for (a) α = 0, (b) α = 0.5 and (c) α = 1.

For α = 0 case, the material sandwiched between the 
electrodes is highly stressed whereas, the material enclosing 
the edges D and E of electrodes contributes to no stress 
bearing. As α increases to 0.5, the concentration of von 
Mises stress decreases and the stress is more uniformly 
distributed throughout the material. When α=1, almost all of 
the material is subjected to uniform stress. This would limit 
the corresponding structural deformations for an applied 
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compressive load. The overall structural compliance for the 
3 cases is evaluated and is plotted against α as shown below.

Further, the design obtained in α= 0.5 case exhibits 
improved FUF and decreased compliance compared to 
cases α= 0 and α= 1. Therefore, this design (α= 0.5) may be 
regarded as the suitable choice out of the 3 designs.

The variation of structural compliance with α is shown 
in Figure 4. As expected, with an increase in α, a decrease 
in structural compliance is observed. This implies that 
as α increases, the design is less prone to deformations 
under compressive load. To understand the electrostatic 
performance of the optimized designs, the electric field 
intensity maps in the designs for α = 0, 0.5 and 1 are evaluated 
and are displayed in Figure 5 (a), (b), and (c) respectively. 
The electric field distributions in the material for α=0 case 
are very uniform. However, with an increase in α, the electric 
field in the material becomes more non-uniform causing 
disproportionate stress in the material.

Figure 4.  Variation of structural compliance with α.

Figure 5.  Electric field intensity maps inside the optimized 
designs for (a) α = 0, (b) α = 0.5 and (c) α = 1.

With the above field results, the FUF is computed using 
Equation (3) and is plotted against α in Figure 6. From Figure 
6, it is observed that an increase in α results in a decrease in 
FUF. This implies that as α increases, the optimized design 
exhibits poorer electrostatic stress control and is more prone 
to failure.

Figure 6.  Variation of Field Uniformity Factor (FUF) with 
parameter α.

4.  Conclusion
In the proposed TO procedure, the shape and 
structure of the material are optimized by considering 
combined von Mises and electrostatic stress. A weight 
coefficient α is introduced to adjust the influence of 
static-structural and electrostatic stresses. When the 
influence of static-structural stress is neglected (α=0), 
the optimized structure offers the best electrostatic 
stress control (maximum FUF). When the influence 
of electrostatic stress is neglected (α=1), the optimized 
structure offers the lowest structural deformations 
(minimum compliance). When the equal influence 
of both types of stresses is considered (α=0.5), the 
resultant design offers a perfect balance between 
structural and electrical design performances. In this 
process, the optimized designs exhibit reduced von 
Mises stress concentrations in addition to reduced local 
electric field enhancements. Experimental validations 
will be conducted as a part of future work.
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